35 research outputs found

    An Intelligent Framework for Oversubscription Management in CPU-GPU Unified Memory

    Full text link
    This paper proposes a novel intelligent framework for oversubscription management in CPU-GPU UVM. We analyze the current rule-based methods of GPU memory oversubscription with unified memory, and the current learning-based methods for other computer architectural components. We then identify the performance gap between the existing rule-based methods and the theoretical upper bound. We also identify the advantages of applying machine intelligence and the limitations of the existing learning-based methods. This paper proposes a novel intelligent framework for oversubscription management in CPU-GPU UVM. It consists of an access pattern classifier followed by a pattern-specific Transformer-based model using a novel loss function aiming for reducing page thrashing. A policy engine is designed to leverage the model's result to perform accurate page prefetching and pre-eviction. We evaluate our intelligent framework on a set of 11 memory-intensive benchmarks from popular benchmark suites. Our solution outperforms the state-of-the-art (SOTA) methods for oversubscription management, reducing the number of pages thrashed by 64.4\% under 125\% memory oversubscription compared to the baseline, while the SOTA method reduces the number of pages thrashed by 17.3\%. Our solution achieves an average IPC improvement of 1.52X under 125\% memory oversubscription, and our solution achieves an average IPC improvement of 3.66X under 150\% memory oversubscription. Our solution outperforms the existing learning-based methods for page address prediction, improving top-1 accuracy by 6.45\% (up to 41.2\%) on average for a single GPGPU workload, improving top-1 accuracy by 10.2\% (up to 30.2\%) on average for multiple concurrent GPGPU workloads.Comment: arXiv admin note: text overlap with arXiv:2203.1267

    Working Memory for Spatial Sequences: Developmental and Evolutionary Factors in Encoding Ordinal and Relational Structures

    Get PDF
    Sequence learning is a ubiquitous facet of human and animal cognition. Here, using a common sequence reproduction task, we investigated whether and how the ordinal and relational structures linking consecutive elements are acquired by human adults, children, and macaque monkeys. While children and monkeys exhibited significantly lower precision than adults for spatial location and temporal order information, only monkeys appeared to exceedingly focus on the first item. Most importantly, only humans, regardless of age, spontaneously extracted the spatial relations between consecutive items and used a chunking strategy to compress sequences in working memory. Monkeys did not detect such relational structures, even after extensive training. Monkey behavior was captured by a conjunctive coding model, whereas a chunk-based conjunctive model explained more variance in humans. These age- and species-related differences are indicative of developmental and evolutionary mechanisms of sequence encoding and may provide novel insights into the uniquely human cognitive capacities.Journal of Neuroscienc

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Antinociceptive Effects of Shenling Baizhu through PI3K-Akt-mTOR Signaling Pathway in a Mouse Model of Bone Metastasis with Small-Cell Lung Cancer

    No full text
    Shenling Baizhu additive powder (SLBZ-AP), a formulation of a variety of natural medicinal plants, has clinical efficacy in treating cancers in previous studies. We explored the effect of SLBZ-AP in bone metastasis of lung cancer (BMLC) mice, and the possible mechanism involved was further investigated in the present study. Mice model of BMLC was made and treated with SLBZ-AP. Pain behavioral tests were performed to explore the effect on BMLC-induced pain in mice. TUNEL staining was used to investigate apoptosis. The mRNA expression of markers in the PI3K/Akt/mTOR pathway was measured by qPCR, and protein expression was detected by western blotting and immunohistochemistry analysis. SLBZ-AP relieved BMLC-induced pain and prolonged animals’ survival, promoted cell apoptosis in the marrow from the tibia of BMLC mice, and inhibited mRNA and protein expression of AKT, mTOR, P70S6, and VEGF, as well as protein expression of p-AKT, p-mTOR, p-P70S6, and VEGF upregulation in the marrow of tibia induced by BMLC, an effect which was similar to rapamycin. Our results suggested that SLBZ-AP may have antinociceptive effect and prolong survival of BMLC mice at least partially by inhibiting cell proliferation and promoting apoptosis through the PI3K/Akt/mTOR signaling pathway. SLBZ-AP may be a potential candidate for BMLC therapy

    Dynamic Proteomic Characteristics and Network Integration Revealing Key Proteins for Two Kernel Tissue Developments in Popcorn

    No full text
    The formation and development of maize kernel is a complex dynamic physiological and biochemical process that involves the temporal and spatial expression of many proteins and the regulation of metabolic pathways. In this study, the protein profiles of the endosperm and pericarp at three important developmental stages were analyzed by isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with LC-MS/MS in popcorn inbred N04. Comparative quantitative proteomic analyses among developmental stages and between tissues were performed, and the protein networks were integrated. A total of 6,876 proteins were identified, of which 1,396 were nonredundant. Specific proteins and different expression patterns were observed across developmental stages and tissues. The functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the development of the tissues. The whole, endosperm-specific and pericarp-specific protein networks integrated 125, 9 and 77 proteins, respectively, which were involved in 54 KEGG pathways and reflected their complex metabolic interactions. Confirmation for the iTRAQ endosperm proteins by two-dimensional gel electrophoresis showed that 44.44% proteins were commonly found. However, the concordance between mRNA level and the protein abundance varied across different proteins, stages, tissues and inbred lines, according to the gene cloning and expression analyses of four relevant proteins with important functions and different expression levels. But the result by western blot showed their same expression tendency for the four proteins as by iTRAQ. These results could provide new insights into the developmental mechanisms of endosperm and pericarp, and grain formation in maize
    corecore